
LDU: A LIGHTWEIGHT CONCURRENT UPDATE METHOD WITH
DEFERRED PROCESSING FOR LINUX KERNEL SCALABILITY

Joohyun Kyong and Sung-Soo Lim
School of Computer Science

Kookmin University
Seoul, Korea

email: joohyun0115@gmail.com, sslim@kookmin.ac.kr

ABSTRACT
We propose a novel light weight concurrent update method,
LDU, to improve performance scalability for Linux ker-
nel on many-core systems through eliminating lock con-
tentions for update-heavy global data structures during pro-
cess spawning and optimizing update logs. The proposed
LDU is implemented into Linux kernel 3.19 and evaluated
using representative benchmark programs. Our evaluation
reveals that the Linux kernel with LDU shows performance
improvement by ranging from 1.2x through 2.2x on a 120
core system.

KEY WORDS
Scalability, Operating System, Linux, Concurrent Update

1 Introduction

With the drastic increase of CPU core counts in various
high-end server systems, achieving performance scalabil-
ity of operating systems running on such many-core sys-
tems has been an important issue in research communities.
Linux has been naturally considered as a major target for
the scalability improvement and a number of accomplish-
ments are published. Early results include RCU [16] and
hazard pointer [19] to improve scalability for read-most
data structures in the Linux kernel. Though the early results
show certain level of improvement in scalability, it turned
out that more significant portion of scalability limitation
of Linux kernel is due to lock contention in update-heavy
global data structures including file reverse mappings and
anonymous reverse mappings during spawning child pro-
cesses [2] [21]. Such update-heavy data structures cause
serialization of the update operations leading to severe per-
formance degradation.

To solve this problem, an existing approach is to
make the update-heavy data structures as non-blocking [13]
based on compare-and-swap(CAS). Introducing non-
blocking data structures eliminates the update serializa-
tion problem during process spawning, but incurs addi-
tional issues due to inter-core communication bottlenecks
and cache coherence system’s write serialization [4]. To
overcome the issues caused by cache coherence system, S.
Boyd-Wickizer et al. proposed Oplog [4] where logs up-
date operations with time stamps and actual updates are

performed later when the updated data need to be read.
While Oplog nicely solves the update serialization problem
without any cache coherence-related overheads, the merg-
ing of the update logs recorded in multiple per-core data
structures considering time stamps further causes perfor-
mance overheads resulting in limited scalability improve-
ment [15].

This paper proposes a novel concurrent update
method, LDU, applicable to Linux reverse mapping solv-
ing the problems mentioned above: the overheads caused
by inter-core communication bottlenecks and per-core log
management with time stamps.

The LDU is similar to Oplog in that it defers the actual
update operations as late as possible to reduce serialization
problems, but it uses a light weight global queue with non-
blocking synchronization for update logs and eliminates
time stamps required for per-core log management. In ad-
dition, to optimize the log management and minimize the
traversal overheads during reading, LDU applies update-
side absorbing algorithm based on atomic marking and thus
efficiently find the operations to be canceled. The evalua-
tion of the proposed LDU on Linux kernel 3.19.rc4 running
on a 120 core system reveals that the execution times could
be improved by 1.7x, 1.6x, and 2.2x for a fork-intensive
workload- AIM7 [1], Exim from MOSBENCH [5], and lm-
bench [17], respectively.

This paper is organized as follows. Section 2 summa-
rizes related works and compare our contributions to pre-
vious works. Section 3 describes the design of the LDU
algorithm and Section 4 explains how to apply to Linux
kernel. section 5 explains our implementations in Linux
and Section 6 shows the results of the experimental evalu-
ation. Finally, section 7 concludes the paper.

2 Background and Related Work

2.1 Linux Scalability

Shared address spaces in multithreaded applications easily
become scalability bottlenecks since kernel operations in-
cluding mmap and munmap system calls and page faults
handling require per-process locks for synchronization.
BonsaiVM [6] solved this address space problem by using
the RCU; RadixVM [7] created a new VM using refcache

Proceedings of the 13th IASTED International Conference

February 15 - 16, 2016 Innsbruck, Austria
Parallel and Distributed Computing and Networks (PDCN 2016)

DOI: 10.2316/P.2016.834-006 258

and radix tree, which enable munmap, mmap, and page
fault on non-overlapping memory regions to scale per-
fectly. Alternatively, to avoid contention caused by shared
address space locking, system programmers change their
multithreaded applications to use processes [5].

Multi-processing environment suffers from scalabil-
ity bottlenecks due to the well-known fork scalability prob-
lem [2] [21]. When Linux spawns child process, the Linux
substantially performs locks because of protecting the re-
verse mapping data structure naturally causing bottlenecks.
Oplog [4], which is an important basis of our approach,
solves this problem using time-stamp log and per-core pro-
cessing.

2.2 Locking

MCS [18], a scalable exclusive lock, is used in the Linux
kernel [8]. to avoid unfairness at high contention levels,
so this scalable exclusive lock can be used for fine grained
locking in Linux. However, in MCS, since only one thread
may hold the lock at a time, it can cause low scalability in
case of long critical regions. Reader-writer lock [9] allows
either number of readers to execute concurrently or single
writer to execute. Thus, readers-writer locks allow better
scalability in case of read-mostly objects.

In read-mostly data structures, RCU [16] can be quite
useful since it allows read operations to proceed without
read locks, and delays freeing of data structures to avoid
races. One drawback is that as the update rate increases,
their performance and scalability decrease due to a single
writer and their synchronization function. Consequently,
scalable exclusive lock, reader-writer lock and RCU re-
quire serialization for updates and thus show significant
limitation on scalability.

2.3 Non-Blocking algorithm

One method for the concurrent update is using the non-
blocking algorithms [13] [11] [22], which are based on
CAS. In non-blocking algorithms, each core tries to read
the values of shared data structures from its local location,
but has possibility of reading obsolete values. CAS is per-
formed at the time of reading values that are not the current
values and CAS fails and requires retrials sometimes when
the values have been overwritten. Consequently, both re-
peated CAS operation and their iteration loop caused by
CAS fails cause bottlenecks due to inter-core communica-
tion overheads [4]. Moreover, none of the non-blocking al-
gorithms implements an iterator, whose data structure just
consists of the insert, delete and contains operations [20].
The Linux, however, commonly uses the iteration to read,
so when applying non-blocking algorithms to the Linux,
they may meet this iteration problem. Petrank [20] solved
this problem by using a consistent snapshot of the data
structure; this method, however, may require a lot of effort
to apply its sophisticated algorithms to Linux. For evalu-
ation purposes, we implemented Harris linked list [13] to

Linux, and we sometimes have failure where reading the
pointer that had been deleted by updater concurrently re-
sult of the problem of the iteration.

Linux kernel uses lock-less list(”lock-less NULL ter-
minated single list”) that are widely used in the Linux ker-
nel to improve scalability. In order to delete operation for
multiple consumer, the existing algorithms traverse the list
from beginning or their optimized point. On the other hand,
lock-less list inserts node at the first of the list, so when
the CAS operation fails, they will minimally traverse from
the head node. Although lock-less list uses a non blocking
method, they retries minimally and thus they can signifi-
cantly reduce inter-core communication bottleneck and the
repeated loop bottleneck. Our proposed method uses this
feature in case of inserting the operation log.

2.4 Concurrent Update

Though sufficient level of performance scalability has been
achieved for reader intensive operations through RCU and
Hazard pointer, solutions to scalability for update-heavy
operations has not been satisfiable. A recent paper by Ar-
bel and Attiya [3] shows a new design of concurrent search
tree called the Citrus tree. The Citrus tree combines RCU
and fine-grained locks, and it supports concurrent write op-
erations that traverse the search tree by using RCU con-
currently. When increasing the update rate, Citrus tree
still suffers from bottlenecks. RLU [14] presents a new
synchronization mechanism that allows unsynchronized se-
quences of reads to execute concurrently with updates. In
high update rate, Oplog can achieve substantially multi-
core scaling for update-heavy data structures. Our work fo-
cus on update-heavy data structures and uses non-blocking
method to store the operation log instead of per-core pro-
cessing.

3 LDU Algorithm

This section describes the LDU algorithm, a lightweight
concurrent update for update-heavy data structures based
on deferred updates. Challenges to designing a deferred
update mechanism includes performing concurrent update
with minimal cache line transfers allowing parallel updates.
At each update operation, LDU records this update opera-
tion log to lock-less list. Before the read operation, LDU
applies the updates log in chronological order. In order to
deferred update, LDU divide the update operation into log-
ical update and physical update. The logical update inserts
logs into the lock-less list and carries out update side ab-
sorbing; on the other hand, the physical update executes
these operations that are minimized by the update side ab-
sorbing.

3.1 Approach

LDU’s scheme for concurrent update is proposed to over-
come limitations of Linux kernel where both insert and re-

259

Core2

read

Root

A B

Lock-less list

Tree lock

Tree unlock

synchronize

insert

i-mark : 1
r-mark : 0

Obj C

op : insert

Root

A B

Lock-less list

DEA

C

CDE

Root

D B

Lock-lesslist

NULL

Threads memory

insert

i-mark : 1
r-mark : 0

Obj D

op : insert

insert

i-mark : 1
r-mark : 0

Obj E

op : insert

remove

i-mark : 0
r-mark : 0

Obj C

op : insert
remove

i-mark : 0
r-mark : 0

Obj E

op : insert

remove

i-mark : 0
r-mark : 1

Obj A

op : remove

Cor0 Core1

D

physical
update

read tree

T1's

T2's

T3's

T1T1

T1T2

T1T3

physical
update

D

A

Figure 1: LDU example showing six update operations and
one read operation. The execution flows from top to bot-
tom. Memory represents original data structure and log-
ging queue at T1, T2 and T3, respectively.

move operations must not be invoked concurrently for the
same object, but reads can be concurrently invoked with
update. LDU borrows ideas from Oplog’s deferred pro-
cessing and Harris’ marking scheme.

One important algorithm in our proposed novel con-
current update scheme is update-side absorbing operation
that cancels duplicated operations for optimizations. A new
remove operation, for example, may cancel an existing in-
sert operation with regard to same object, so reader can
eventually reads consistent data. Even though the Oplog’s
absorbing operation is invoked by read, LDU’s absorbing
operation is fully invoked by update, so read-side perfor-
mance is enhanced.

The basic principle of update-side absorbing is that
update uses atomic marking operation for the object’s mark
field, which allows previous operation to cancel. For in-
stance, if a new remove operation occurs after insert op-
eration of the same object, LDU does not store this op-
eration in the lock-less list; instead, it changes the insert
mark field to zero using the CAS. This mark is checked
later when reading operation occurs and the operation log

maintained in the lock-less list is applied to original data
structure atomically.

Figure 1 gives an example of deferred update with six
update operations and one read operation. The data struc-
ture for physical update is a tree, and initial values in the
tree are node A and B. In contrast, the data structure for
logical update is lock-less list. In the top figure, Core0,
Core1 and Core2 perform the logical insert operation to
nodes C, D and E, respectively. The logical inserts set the
insert mark, and they then insert their nodes into lock-less
list. In this case, none of the lock is needed because LDU
uses the lock-less list;all threads can execute the update
concurrently. At T1, the tree contains node A and B and
the lock-less list contains node E, D and C. When remov-
ing the node C, the node C, whose mark field was marked
by insert, atomically cleans up the insert marked field. At
T2, the lock-less list contains nodes A, E, D, and C, and the
marking field is zero for nodes E and C. Before running the
synchronize function, they need to lock the original tree’s
lock using the exclusive lock in order to protect the tree’s
operation. The synchronize migrates from lock-less list
node to tree node, each of which is the marked node, so
nodes A and D are migrated. Finally, the tree contains nodes
D and B, so the reader can read eventually consistent data.

One notable difference between Oplog and LDU
is that LDU uses a light weight global queue with
non-blocking synchronization for update logs and elimi-
nates time stamps while Oplog is dependent on per-core
logs with time stamps. By eliminating the global time
stamps(hardware-dependent feature), LDU is not depen-
dent on hardware feature. Furthermore, to optimize the log
management and minimize the traversal overheads during
reading, LDU applies efficient update-side absorbing algo-
rithm instead of read-side absorbing algorithm.

3.2 logical update

The pseudo code for LDU’s logical update is given in
figure 2. The logical insert, the concurrent update
function, checks whether this object already has been re-
moved by logical remove. If this object has been re-
moved, logical insert initializes the marking field and
then they return, which is fastpath. The marking field needs
synchronization because this field in the logical update is
shared with the physical update, so the CAS operation is
needed. When the marking field has been initialized, they
set the marking field, then they check whether or not this
node already has been inserted in lock-less list. If the node
does not exist in lock-less list, then they insert the node into
lock-less list.

3.3 Physical update

The pseudo code for LDU’s physical update is given in Fig-
ure 3. First, they check whether lock-less list is an empty
list or not, then they iterate the lock-less list. If the marking
field has been set, they execute migration from lock-less to

260

function logical insert(obj, root):
If CAS(obj.del node.mark, 1, 0) 6= 1:

obj.add node.mark← 1
If test and set bit(OP INSERT, obj.exist) 6= true:

set bit(OP INSERT, obj.used):
obj.add node.op← OP INSERT
obj.add node.key← obj
obj.add node.root← root
add lock less list(obj.add node)

function logical remove(obj, root):
If CAS(obj.add node.mark, 1, 0) 6= 1:

obj.del node.mark← 1
If test and set bit(OP REMOVE, obj.exist) 6= true:

set bit(OP REMOVE, obj.used):
obj.del node.op← OP REMOVE
obj.del node.key← obj
obj.del node.root← root
add lock less list(obj.del node)

Figure 2: LDU logical update algorithm. logical insert
represents non-blocking insert function. It may be called
by original insert position without locks. The fastpath is
that when their object was removed by logical remove,
logical insert just changes node’s marking field.

original data structure. Because the marking field in phys-
ical update is shared with logical update, the CAS opera-
tion is needed. They initialize the used field, which needs
to protect the object from freed through destructor. The
programmer must acquire locks on the synchronize ldu
function, which migrates log to original data structure. Fi-
nally, the physical update executes original functions
by using the operation log.

4 Concurrent update for Linux kernel

In this section, we describe how to apply our concurrent
update based on deferred update method to Linux. The
Linux fork is associate with an anonymous page and a file
page. When many processes are simultaneously created in
Linux, these two reverse mapping can become bottlenecks
since their data structures are shared between processes.
Figure 4 shows the scalability problem in case of the fork-
intensive workload that simultaneously creates many pro-
cesses. Up to 60 core, the stock Linux scales linearly, then
creating the reverse mapping becomes the bottleneck be-
cause their interval trees are protected by locks. Therefore,
fork-intensive workload can pose a scalability bottleneck
due to the update-heavy data structures [4] [2] [21].

Figure 5 gives an example of applying the LDU to
file reverse mapping and shows relationship between inter-
val trees and lock-less lists. An interval tree contains two
virtual memory area(VMA) nodes; on the other hand,
the lock-less list contains the right VMA as shown in Fig-

function synchronize ldu(obj, head):
If (head.first = NULL):

return;
entry← xchg(head.first, NULL);
for each list node:

obj← node.key
clear bit(node.op, obj.exist)
If CAS(node.mark, 1, 0) = 1:

physical update(node.op, obj, node.root)
clear bit(node.op, obj.used)

function physical update(op, obj, root):
If op = OP INSERT :

call real insert function(obj, root)
Else If op = OP REMOVE :

call real remove function(obj, root)

Figure 3: LDU physical update algorithm.
synchronize ldu may be called by reader and con-
verts update log to original data structure traversing the
lock-less list.

 0

 100k

 200k

 300k

 400k

 500k

 600k

 700k

 0 20 40 60 80 100 120

jo
b
s
/m

in

cores

stock

Figure 4: Scalability of AIM7 multiuser. This workload
simultaneously create many processes. Up to 60 core, the
stock Linux scale linearly, then they flattens out.

ure 5. It means that the right VMA has been deleted, and the
synchronization has not been invoked.

In order to using the LDU, the data struc-
tures involved in the head(address space) or the
node(vm area structure) can be modified with LDU’s
structure as shown in Figure 5. In addition, programmer
must replace physical update with logical update to elim-
inate the lock. Before the corresponding readers need to
be read, LDU must call synchronize function to keep the
consistency.

5 Implementation

We implemented the new deferred update algorithm in
Linux 3.19.rc4 kernel, and our modified Linux is available
as open source. LDU’s scheme is based on deferred pro-

261

vm_area_struct

vm_next

shared.rb

ldu_node

i_mmap

mmap

Linux Interval Tree

TREE ROOT

ldu_head HEADLDU List

Left

address_space

mmap

Right

next

vm_area_struct

vm_next
mm_struct

page

shared.rb

ldu_node

Deleted Node

Figure 5: An example of applying the LDU to file reverse
mapping.

cessing, so it needs a garbage collector for delayed free. In
order to implement the garbage collector, we use the lock-
less list and a periodic timer(1 sec) in the Linux.

We compare our LDU implementation to a concur-
rent non-blocking Harris linked list [13];therefore, we im-
plement the Harris linked list to Linux kernel. The code
refers from sysnchrobench [12] and ASCYLIB [10], and
we convert their linked list to Linux kernel style. Because
both synchrobench and ASCYLIB leak memory, we im-
plement additional garbage collector for the Linux kernel
using Linux’s work queues and lock-less list.

In order to further improve performance, we move
their ordered list to unordered list. A feature of the Har-
ris linked list is all the nodes are ordered by their key.
Zhang [23] implements a lock-free unordered list algo-
rithm, whose list is each insert and remove operation ap-
pends an intermediate node at the head of the list;these
approach is practically hard to implement. Indeed, Linux
does not require contains operation because the Linux data
structures such as list, tree and hash table not depended on
search key;they depend on their unique object. This feature
can eliminates the ordered list in Harris linked list. There-
fore, we perform each insert operation appends an interme-
diate node at the first node of the list;on the other hand,
each remove operation searches from head to their node.

To the scalability of fork, the reverse mapping’s
lock contention should be eliminated not only from
file reverse mapping but also from anonymous re-
verse mapping. The structure of file reverse map-
ping is simplified relatively to the structure of anony-
mous mapping because the anonymous reverse mapping
is entangled by their global object(anon vma) and their
chain(anon vma chain);therefore, we only apply LDU to
file reverse mapping.

6 Evaluation and Discussion

This section answers the following questions experimen-
tally:

• Does LDU’s design matter for applications?

• Why does LDU’s scheme scale well?

6.1 Experimental setup

To evaluate the performance of LDU, we use well-
known three benchmarks:AIM7 Linux scalability bench-
mark, Exim email server in MOSBENCH and lmbench.
We selected these three benchmarks because they are fork-
intensive workloads and exhibit high reverse mapping lock
contentions. Moreover, AIM7 benchmark has widely been
used in practical area not only for testing the Linux but
also for improving the scalability. To evaluate LDU for
real world applications, we use Exim which is the most
popular email server. A micro benchmark, Lmbench, has
been selected to focus on Linux fork operation-intensive
fine grained evaluations.

In order to evaluate Linux scalability, we used four
different experiment settings. First, we used the stock
Linux as the baseline reference. Second, we used ordered
Harris lock-free list while we apply unordered Harris lock-
free list for the third setting (see section 5). Finally, we
used combination of unordered Harris lock-free list for
anonymous mapping and our LDU for file mapping. Since
we cannot obtain detailed implementation of Oplog, we
could not include comparison between LDU and Oplog in
this paper.

We ran the three benchmarks on Linux 3.19.rc4 with
stock Linux with the automatic NUMA balancing feature
disabled because the Harris linked list has the iteration
issue [20]. All experiments were performed on a 120
core machine with 8-socket, 15-core Intel E7-8870 chips
equipped with 792 GB DDR3 DRAM.

6.2 AIM7

AIM7 forks many processes, each of which concurrently
runs. We used AIM7-multiuser, which is one of workload
in AIM7. The multiuser workload is composed of various
workloads such as disk-file operations, process creation,
virtual memory operations, pipe I/O, and arithmetic oper-
ation. To minimize IO bottlenecks, the workload was exe-
cuted with tmpfs filesystems, each of which is 10 GB. To
increase the number of users during our experiment and
show the results at the peak user numbers, we used the
crossover.

The results for AIM7-multiuser are shown in Fig-
ure 6, and the results show the throughput of AIM7-
multiuser with four different settings. Up to 60 core,
the stock Linux scales linearly while serialized updates
in Linux kernel become bottlenecks. However, up to

262

 0

 200k

 400k

 600k

 800k

 1M

 1M

 0 20 40 60 80 100 120

jo
b
s
/m

in

cores

anon-harris-stock, le-stock
anon-harris, le-harris

anon-harris-unorder, le-harris-unorder
anon-harris-unorder, le-LDU

Figure 6: Scalability of AIM7 multiuser for different
method. The combination LDU with unordered harris list
scale well;in contrast, up to 60 core, the stock Linux scale
linearly, then it flattens out.

 0

 20k

 40k

 60k

 80k

 100k

 120k

 140k

 160k

 0 20 40 60 80 100 120

m
e
s
s
a
g
e
s
/s

e
c

cores

anon-harris-stock, le-stock
anon-harris, le-harris

anon-harris-unorder, le-harris-unorder
anon-harris-unorder, le-LDU

Figure 7: Scalability of Exim. The stock Linux collapses
after 60 core;in contrast, both unordered harris list and our
LDU flatten out.

120core, unordered harris list and our LDU scale well be-
cause these workloads can run concurrently updates and
can reduce the locking overheads due to reader-writer
semaphores(anon vma, file). The combination of LDU
with unordered harris list has best performance and scal-
ability outperforming stock Linux by 1.7x and unordered
harris list by 1.1x. While the unordered harris list has
19% idle time(see Table 1), stock Linux has 51% idle time
waiting to acquire both anon vma’s rwsem and file’s
i mmap rwsem. We can notice that although LDU has 23%
idle time, the throughput is higher than unordered harris
list. In this benchmark, the ordered harris list has the low-
est performance and scalability because their CAS fails fre-
quently.

6.3 Exim

To measure the performance of Exim, shown in Figure 7,
we used default value of MOSBENCH to use tmpfs for
spool files, log files, and user mail files. Clients run on

AIM7 user sys idle

Stock(anon, file) 2487 s 1993 s 4647 s(51%)
H(anon, file) 1123 s 3631 s 2186 s(31%)
H-unorder(anon, flie) 3630 s 2511 s 1466 s(19%)
H-unorder(anon), L(file) 3630 s 1903 s 1662 s(23%)

EXIM user sys idle

Stock(anon, file) 41 s 499 s 1260 s(70%)
H(anon, file) 47 s 628 s 1124 s(62%)
H-unorder(anon, file) 112 s 1128 s 559 s(31%)
H-unorder(anon), L(file) 87 s 1055 s 657 s(37%)

lmbench user sys idle

Stock(anon, file) 11 s 208 s 2158 s(91%)
H(anon, file) 11 s 312 s 367 s(53%)
H-unorder(anon, file) 11 s 292 s 315 s(51%)
H-unorder(anon), L(file) 12 s 347 s 349 s(49%)

Table 1: Comparison of user, system and idle time at 120
cores.

the same machine and each client sends to a different user
to prevent contention on user mail file. The Exim was bot-
tlenecked by per-directory locks protecting file creation in
the spool directories and by forks performed on different
cores [5]. Therefore, although we eliminate the fork prob-
lem, the Exim may suffer from contention on spool direc-
tories.

Results shown in Figure 7 show that Exim scales well
for all methods up to 60 core but not for higher core counts.
The stock Linux shows performance degradation for more
than 60 core. Both unordered harris list and our LDU do
not suffer from performance loss because they do not ac-
quire the anon vma semaphore and i mmap semaphore in
fork. LDU performs better due to the fact that it uses
both update-side absorbing and lock-less list, outperform-
ing stock Linux by 1.6x and unordered harris list by 1.1x.
Even though we applied scalable solution, Exim shows lim-
itation on scalability improvement since the main bottle-
neck is per-directory lock contention on spool directories.
The unordered harris list has 31% idle time, whereas LDU
has 37% idle time due to the their efficient concurrent up-
dates.

6.4 lmbench

lmbench has various workloads including process creation
workload(fork, exec, sh -c, exit). This workload is used
to measure the basic process primitives such as creating
a new process, running a different program, and context
switching. We configured process create workload to en-
able the parallelism option which specifies the number of
benchmark processes to run in parallel [17]; we used 100
processes.

The results for lmbench are shown in Figure 8, and the
results show the execution times of the fork microbench-
mark in lmbench with four different methods. Three meth-

263

 0

 5k

 10k

 15k

 20k

 25k

 30k

 35k

 40k

 45k

 0 20 40 60 80 100 120

e
x
e
c
u
ti

o
n
 t

im
e
(m

ic
ro

s
e
c
o
n
d
s
)

cores

anon-harris-stock, le-stock
anon-harris, le-harris

anon-harris-unorder, le-harris-unorder
anon-harris-unorder, le-LDU

Figure 8: Execution time of lmbench’s fork micro bench-
mark. The fork micro benchmark drops down for all meth-
ods up to 15 core but either flattens out or goes up slightly
after that. At 15 core, the stock Linux goes up;the others
flattens out

ods outperform stock Linux by 2.2x at 120 cores;however,
before 30 core, two harris list have lower performance
due to their execution overheads. While stock Linux has
90% idle time, other methods have approximately 50%
idle time since stock Linux waits to acquire reverse map-
ping locks such as anon vma’s rwsem and mapping’s
i mmap rwsem.

7 Conclusion

We propose a concurrent update algorithm, LDU, for
update-heavy data structures scalable for many-core sys-
tems. To achieve the scalability during process spawn-
ing, we applied deferred log processing with global
log queue and update-side absorbing to Linux reverse
mapping. Evaluation results using the AIM7, Exim
and lmbench reveal that LDU shows better perfor-
mance up to 2.2 times compared to existing solutions.
LDU is implemented on to Linux kernel 3.19 and
available as open-source from https://github.com/

KMU-embedded/scalablelinux.

8 Acknowledgments

This work was supported by Institute for Information
& communications Technology Promotion (IITP) grant
funded by the Korea government (MSIP) (14-824-09-
011, “Research Project on High Performance and Scalable
Manycore Operating System”)

References

[1] Aim benchmarks. http://sourceforge.net/

projects/aimbench.

[2] Tim Chen Andi Kleen. Scaling problems in fork. In
Linux Plumbers Conference, September, 2011.

[3] Maya Arbel and Hagit Attiya. Concurrent updates
with rcu: Search tree as an example. In Proceedings
of the 2014 ACM Symposium on Principles of Dis-
tributed Computing, PODC ’14, pages 196–205, New
York, NY, USA, 2014.

[4] Silas Boyd-Wickizer. Optimizing communications
bottlenecks in multiprocessor operating systems ker-
nels. In PhD thesis, Massachusetts Institute of Tech-
nology, 2013.

[5] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert
Morris, and Nickolai Zeldovich. An analysis of Linux
scalability to many cores. In 9th USENIX Sympo-
sium on Operating System Design and Implementa-
tion, pages 1–16, Vancouver, BC, Canada, October
2010.

[6] Austin T. Clements, M. Frans Kaashoek, and Nick-
olai Zeldovich. Scalable address spaces using RCU
balanced trees. In Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS 2012), pages 199–210, London, UK, February
2012.

[7] Austin T. Clements, M. Frans Kaashoek, and Nicko-
lai Zeldovich. Radixvm: Scalable address spaces for
multithreaded applications. In Proceedings of the 8th
ACM European Conference on Computer Systems,
EuroSys ’13, pages 211–224, New York, NY, USA,
2013.

[8] J. Corbet. Mcs locks and qspinlocks, 2014. https:
//lwn.net/Articles/590243/.

[9] P. J. Courtois, F. Heymans, and D. L. Parnas. Concur-
rent control with “readers” and “writers”. Communi-
cations of the ACM, 14(10):667–668, October 1971.

[10] Tudor David, Rachid Guerraoui, and Vasileios Trig-
onakis. Asynchronized concurrency: The secret to
scaling concurrent search data structures. In Proceed-
ings of the Twentieth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, pages 631–644,
New York, NY, USA, 2015.

[11] Mikhail Fomitchev and Eric Ruppert. Lock-free
linked lists and skip lists. In Proceedings of the
Twenty-third Annual ACM Symposium on Principles
of Distributed Computing, PODC ’04, pages 50–59,
2004.

[12] Vincent Gramoli. More than you ever wanted to
know about synchronization: Synchrobench, measur-
ing the impact of the synchronization on concurrent
algorithms. In Proceedings of the 20th ACM SIG-
PLAN Symposium on Principles and Practice of Par-
allel Programming, PPoPP 2015, pages 1–10, New
York, NY, USA, 2015.

264

[13] Timothy L. Harris. A pragmatic implementation of
non-blocking linked-lists. In Proceedings of the 15th
International Conference on Distributed Computing,
DISC ’01, pages 300–314, London, UK, UK, 2001.

[14] Alexander Matveev, Nir Shavit, Pascal Felber, and
Patrick Marlier. Read-log-update: A lightweight
synchronization mechanism for concurrent program-
ming. In Proceedings of the 25th Symposium on Op-
erating Systems Principles, SOSP ’15, pages 168–
183, New York, NY, USA, 2015.

[15] Paul E. McKenney. Is Parallel Programming
Hard, And, If So, What Can You Do About It?
kernel.org, Corvallis, OR, USA, 2011. Avail-
able: http://kernel.org/pub/linux/kernel/
people/paulmck/perfbook/perfbook.html.

[16] Paul E. McKenney and John D. Slingwine. Read-
copy update: Using execution history to solve con-
currency problems. In Parallel and Distributed Com-
puting and Systems, pages 509–518, Las Vegas, NV,
October 1998.

[17] Larry W McVoy, Carl Staelin, et al. lmbench:
Portable tools for performance analysis. In USENIX
annual technical conference, pages 279–294. San
Diego, CA, USA, 1996.

[18] John M. Mellor-Crummey and Michael L. Scott.
Scalable reader-writer synchronization for shared-
memory multiprocessors. In Proceedings of the Third
PPOPP, pages 106–113, Williamsburg, VA, April
1991.

[19] Maged M. Michael. Hazard pointers: Safe memory
reclamation for lock-free objects. In IEEE Transac-
tions on Parallel and Distributed Systems, volume 15,
pages 491–504, June 2004.

[20] Erez Petrank and Shahar Timnat. Lock-free data-
structure iterators. In DISC ’13 Proceedings of the
27th International Conference on Distributed Com-
puting, Jerusalem, Israel. 2013.

[21] Dave Hansen Tim Chen, Andi Kleen. Linux scalabil-
ity issues. In Linux Plumbers Conference, September,
2013.

[22] Shahar Timnat, Anastasia Braginsky, Alex Kogan,
and Erez Petrank. Wait-free linked-lists. In Proceed-
ings of the 17th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP
’12, pages 309–310, New York, NY, USA, 2012.

[23] Kunlong Zhang, Yujiao Zhao, Yajun Yang, Yujie
Liu, and Michael Spear. Practical non-blocking un-
ordered lists. In DISC ’13 Proceedings of the 27th
International Conference on Distributed Computing,
Jerusalem, Israel. 2013.

265

